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5
Fractal and Fractal-Rate

Point Processes

Jean-Baptiste Joseph Fourier
(1768–1830)demonstrated that a
time function could be constructed
from a superposition of harmonic
functions of different frequencies;
the “Fourier transform” forms the
basis of spectral analysis.

The Hungarian mathematician
Alfr éd Haar (1885–1933), in his
doctoral dissertation under David
Hilbert, introduced a collection of
simple orthogonal functions; these
“Haar wavelets” initiated the field
of time–scale analysis.
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Asdescribed in Chapter 2, fractals are objects whose measures exhibit scaling. We
introduced point processes, along with their appurtenant measures, in Chapter 3, and
set forth various examples in Chapter 4. With the fundamental properties of fractals
and point processes in hand, we are now in a position to investigate the intersection
of these two concepts.

In this chapter we consider various measures that are often used to establish the
presence of fractal behavior in point processes. The spectrum and normalized Haar-
wavelet variance turn out to be the measures of choice, as we will show. The math-
ematical techniques bequeathed to us by Fourier (1822) and Haar (1910) thus play
especially important roles in the analysis of fractal-based point processes. By way
of example, we examine a number of point processes in the biological and physical
sciences using these preferred measures.

We then compare and contrast two general classes of point processes that exhibit
fractal behavior: fractal point processes and fractal-rate point processes. We conclude
by touching briefly on the process of deciding which point process might best describe
an observed sequence of events.

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



MEASURES OF FRACTAL BEHAVIOR IN POINT PROCESSES 103

5.1 MEASURES OF FRACTAL BEHAVIOR IN POINT PROCESSES

As shown in Sec. 2.2, a measure that exhibits scaling, when considered as a function
of time or frequency, indicates power-law behavior. Power-law behavior, in turn, is
often a harbinger of fractal behavior.

As demonstrated in Chapter 3, various relationships exist that link different mea-
sures of a point process. In principle, explicit knowledge of one such statistic leads
directly to an exact form for another. Measures so linked might thus be expected to
provide the same information, although in different form.1 Power-law behavior is
generally preserved among these measures since the relationships linking them gen-
erally involve integration, differentiation, Fourier transformation, and multiplication
by integer powers of the argument of the measure.

5.1.1 Spectrum

In forging interrelationships among the various measures, we begin with the point-
process spectrumSN (f) introduced in Sec. 3.5.2 (the reason that we begin with this
measure will become apparent subsequently). Fractal behavior suggests itself when
this quantity assumes the form

SN (f) ≈ (f/fS)−α (5.1)

over a range of frequencies (see Sec. 2.3), wheref is taken to be positive.
In general, the power-law behavior of a statistic includes an exponent (−αin the

case at hand) that characterizes therelative strengthof the fluctuations at different
frequencies (or times), as well as a multiplicative constant (fα

S ) that indicates the
absolute strengthof the fluctuations at all times (or frequencies).

For a point process with fractal characteristics, the value ofSN (f) typically be-
comes larger as the frequency decreases, and an increasing share of fractal fluctuations
is admitted. For spectral measures, power-law exponents therefore generally take on
negative values, as shown in Eq. (5.1); we discuss this issue further in Sec. 5.2.1.

For similar reasons, we also observe negative values of the power-law exponents for
measures that depend on a delay parameter, such as the count-based autocorrelation
(which is a function of count indexk) and the coincidence rate: correlation typically
decreases with increasing delay.

5.1.2 Normalized Haar-wavelet variance

Given the spectrumSN (f), for all frequenciesf , we obtain the normalized Haar-
wavelet varianceA(T ), for all counting timesT , via Eq. (3.62).A(T ), which relies

1 Actually, different measures are not entirely equivalent since they are subject to different inherent math-
ematical limitations, such as those discussed in Sec. 5.2. Moreover, real and finite data sets are affected by
bias and variance that are not the same for all measures, as considered in detail in Chapter 12. These con-
siderations lead us to conclude that the rate spectrum and normalized Haar-wavelet variance are generally
the measures of choice.
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104 FRACTAL AND FRACTAL-RATE POINT PROCESSES

on the simplest of wavelet basis functions (Haar, 1910), is constructed in accordance
with the recipe provided in Sec. 3.4.3.

We now demonstrate that power-law behavior inSN (f) leads directly to power-law
behavior inA(T ), with a related (but different) exponent and multiplicative constant:

A(T ) ≈ (T/TA)α. (5.2)

We begin with a spectrumSN (f) that varies in a power-law fashion, with exponent
−α where0 < α < 1:

SN (f) = E2[µ] δ(f) + E[µ]
[
1 + (f/fS)−α

]
. (5.3)

Inserting Eq. (5.3) into Eq. (3.62) provides

A(T ) =
4

π2 E[µ] T

∫ ∞

0+

SN (f) sin4(πfT ) f−2 df

=
4

π2T

∫ ∞

0

[
1 + (f/fS)−α

]
sin4(πfT ) f−2 df

=
4
π

∫ ∞

0

[1 + (πfST/x)α] sin4(x) x−2 dx

= 1 + (4/π)(πfST )α 2α(1− 2α−1) Γ(1− α) sin(πα/2) / [α(α + 1)]

= 1 +
(2πfST )α (2− 2α) 2 sin(πα/2) Γ(1− α)

α(α + 1)π

× sin(πα)
2 sin(πα/2) cos(πα/2)

× π

Γ(1− α) Γ(α) sin(πα)
(5.4)

= 1 +
(2− 2α) (2πfST )α

α(α + 1)Γ(α) cos(πα/2)

= 1 +
(2− 2α) (2πfS)α

Γ(α + 2) cos(πα/2)
Tα (5.5)

= 1 + (T/TA)α, (5.6)

which accords with Eq. (5.2) in the power-law regime. The notation0+ indicates that
the integral excludes the delta function atf = 0, and the quantityΓ(x) represents the
(complete) Eulerian gamma function

Γ(x) ≡
∫ ∞

0

tx−1 e−t dt, (5.7)

which we first met in Prob. 4.7. Both fractions following the multiplication signs in
Eq. (5.4) are identically unity. For the first, this follows from the well-known double-
angle trigonometric identity with an angle ofπα/2 whereas for the second it follows
from a property of the Gamma function (Gradshteyn & Ryzhik, 1994, Eq. 8.334.3):

Γ(x) Γ(1− x) sin(πx) = π. (5.8)
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Comparing Eqs. (5.5) and (5.6) provides the constantTA in terms ofα andfS :

1
Tα

A

=
(2πfS)α (2− 2α)

Γ(α + 2) cos(πα/2)
. (5.9)

Evidently, the fractal exponent−α in the spectrum, Eq. (5.3), transforms to the
fractal exponent+α in the normalized Haar-wavelet variance, Eq. (5.6). These ex-
ponents are identical in magnitude but opposite in sign. Increasing the counting time
typically increases the value ofA(T ) for a point process with fractal characteristics
so that power-law exponents for this measure generally take on positive values (see
Sec. 5.2.1 for a further discussion of this issue). As the counting time for the Haar-
wavelet variance increases, fractal fluctuations over larger and larger time scales are
accessed by this measure.

Similar results obtain when generalizing the normalized Haar-wavelet variance
A(T ) to an arbitrary wavelet basis.

5.1.3 Normalized variance

In a similar way, we obtain the normalized varianceF (T ) from the spectrumSN (f)
using Eq. (3.61). This quantity is constructed in accordance with the approach indi-
cated in Sec. 3.4.2.

In this case we obtain

F (T ) =
2

π2 E[µ]T

∫ ∞

0+

SN (f) sin2(πfT ) f−2 df

=
2

π2T

∫ ∞

0

[
1 + (f/fS)−α

]
sin2(πfT ) f−2 df

=
2
π

∫ ∞

0

[1 + (πfST/x)α] sin2(x) x−2 dx

= 1 +
(2πfS)α

Γ(α + 2) cos(πα/2)
Tα (5.10)

= 1 + (T/TF )α, (5.11)

where the cutoff timeTF is implicitly defined by Eqs. (5.10) and (5.11).

5.1.4 Coincidence rate

The coincidence rateG(t) is related to the point-process spectrumSN (f) through a
simple Fourier transform, as provided by Eq. (3.58).

In this case, as well, a power-law form for the coincidence rate emerges, along
with its associated parametertG:

G(t) =
∫ ∞

−∞
SN (f) ei2πft df
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106 FRACTAL AND FRACTAL-RATE POINT PROCESSES

=
∫ ∞

−∞

{
E2[µ] δ(f) + E[µ] + E[µ] |f/fS |−α

}
ei2πft df

= E2[µ] + E[µ] δ(f) + 2E[µ]
∫ ∞

0

(f/fS)−α cos(2πft) df

= E[µ] δ(f) + E2[µ] + 2E[µ] fα
S (2π|t|)α−1

∫ ∞

0

x−α cos(x) dx

= E[µ] δ(f) + E2[µ] + 2E[µ] fα
S (2π|t|)α−1 π

2Γ(α) cos(πα/2)

= E[µ] δ(f) + E2[µ] + E2[µ]
(2πfS)α

2Γ(α) cos(πα/2)E[µ]
|t|α−1

= E[µ] δ(t) + E2[µ]
[
1 + (|t|/tG)α−1

]
. (5.12)

5.1.5 Count autocorrelation

Finally, we determine the count autocorrelation by using Eqs. (5.12) and (3.54):

RZ(k, T ) =
∫ T

−T

G(kT + t) (T − |t|) dt

=
∫ T

−T

{
E2[µ]

[
1 +

(
kT + t

tG

)α−1
]}

(T − |t|) dt, k 6= 0

= E2[µ]
∫ T

−T

(T − |t|) dt

+ E2[µ]
∫ kT+T

kT−T

(s/tG)α−1
(
T − |s− kT |) dt

= E2[µ] T 2 + E2[µ] T 1+α t1−α
G

∫ k+1

k−1

xα−1
(
1− |x− k|) dx

= E2[µ] T 2 + E[µ] T
E[µ] Tα t1−α

G

α(1 + α)
× [

(k + 1)α+1 + (k − 1)α+1 − 2kα+1
]
. (5.13)

The casek = 0 reduces to the mean squareE[Z2
k(T )] so it need not be considered;

this permits us to ignore the delta function att = 0 in the coincidence rate. Hence,
we assumek > 0 without loss of generality.

Using the binomial theorem, for largek Eq. (5.13) yields the simplified result

RZ(k, T ) ≈ E2[µ] T 2 + E[µ] T
E[µ] Tα t1−α

G

α(1 + α)
α(1 + α) kα−1

= E2[µ] T 2 + (E[µ] T ) E[µ] Tα t1−α
G kα−1

= E2[µ] T 2 + (E[µ] T ) (T/TR)α kα−1. (5.14)
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5.1.6 Scaling cutoffs and fractal-exponent estimates

Some of the relationships obtained above remain intact in the absence of either a
small- or large-size cutoff. Nevertheless, dispensing with either of these necessitates
additional mathematical complexity for many of these equations, and renders others
meaningless. Since all data derive from limited measurements, we adhere to the
argument presented in Sec. 2.3.1 and focus on the situation where both cutoffs exist.
This also has the merit of ensuring stationarity (Buckingham, 1983, Chapter 6).

From a theoretical standpoint, power-law behavior in one statistic generally implies
the same in various other measures. Although any measure that takes a time or
frequency argument can serve to characterize fractal behavior in a point process, in
practice some statistics prove more useful than others. To distinguish among the
various methods, we use subscripts to denote the values ofα derived from particular
functions, such asαS andαA for the values ofα obtained from theoretical plots of
the spectrumSN (f) and the normalized Haar-wavelet varianceA(T ), respectively.

Furthermore, for a given finite-length data set, each measure returns anestimate
of α, denoted̂α, and this stochastic value differs from the ideal valueα in a random
fashion. Combining notations,̂αA refers to a fractal-exponent estimate obtained from
an estimated normalized Haar-wavelet variance functionÂ(T ), which, in turn, is
calculated from a real, finite data set. In the context of characterizing fractal behavior
in a point process, these estimates can suffer from a variety of shortcomings: excessive
bias or variance in the measure itself, as mentioned in Chapter 3; a limited range of
allowable power-law exponents, as discussed below; and excessive bias or variance in
the resulting estimates of the power-law exponent and multiplicative constant, which
we treat in detail in Chapter 12.

5.2 RANGES OF POWER-LAW EXPONENTS

5.2.1 Negative values of α

What ranges of fractal exponents are ordinarily observed in experiments? The mea-
sures set forth in Chapter 3 admit negative values ofα, and the relationships considered
in Sec. 5.1 essentially continue to hold, so this issue merits discussion.

Let us consider, for example, a spectrum that increases with frequency for0 <
f < fS :

SN (f) = E2[µ] δ(f) + E[µ]
[
1 +

√
f/fS exp(−f/fS)

]
. (5.15)

The spectrumSN (f), as chosen,increasesas
√

f for 0 < f ¿ fS so that in this
frequency range,SN (f) exhibitsα = − 1

2 .
Thecorresponding coincidence rate, normalized variance, and normalized Haar-

wavelet variance then become
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108 FRACTAL AND FRACTAL-RATE POINT PROCESSES

G(t) = E[µ] δ(t) + E2[µ] +
√

π/2 E[µ] fS

(
1 + x2

n

)−3/2

×
(√√

x2
n + 1 + 1− xn

√√
x2

n + 1− 1
)

(5.16)

F (T ) = 1+

√
8√

π yn

(√√
y2

n + 1 + 1−
√

2
)

(5.17)

A(T ) = 1+

√
2√

π yn

(
4
√√

y2
n + 1 + 1− 3

√
2−

√√
4y2

n + 1 + 1
)

, (5.18)

wherexn = 2πfSt is the normalized time for Eq. (5.16) whileyn = 2πfST is the
normalized time for Eqs. (5.17) and (5.18).

Over long time scales, corresponding to low frequenciesf ¿ fS , these quantities
approach

G(t)− E2[µ] → −
(
E[µ]

/
4π

√
fS

)
t−3/2 (5.19)

F (T )− 1 →
(
2
/
π
√

fS

)
T−1/2 (5.20)

A(T )− 1 →
(
4−

√
2
/
π
√

fS

)
T−1/2, (5.21)

respectively. (For very large times, the outcomes are effectively indistinguishable
from those for the homogeneous Poisson process.) Equations (5.19)–(5.21) are indeed
in accord with the results provided in Sec. 5.1, provided that Eq. (5.12) is generalized
to

G(t) = E[µ] δ(t) + E2[µ]
[
1 + sgn(α) (t/tG)α−1

]
, (5.22)

wheresgn(α) denotes the sign ofα.
However, as will become apparent in Sec. 5.4, values ofα generally lie above zero

and negative values almost never occur in practice. Fractal behavior typically exhibits
increased fluctuations as the time grows larger and the frequency grows smaller, in
contradiction toα < 0. Moreover, the high-frequency cutoff would play a far more
important role in this case. Since the spectrum would increase with frequency until
reaching this cutoff, most of the power would lie just below the cutoff. In effect,
therefore, such a signal would not differ appreciably from narrowband noise. As
a result, this characteristic would dominate the behavior of the signal and would
generally obscure any fractal properties that it might have. Revealing the scaling in
this putative fractal signal would require integrating it a number of times until the
resulting fractal exponent became positive. However, this would radically change the
nature of the signal, thereby suggesting that the narrowband noise description of the
signal would prove most useful.2

2 A similar argument could be made for the low-frequency cutoff for fractal signals with positive fractal
exponentsα. However, a low-frequency cutoff does not affect the behavior of a signal within a window of
duration significantly less than that cutoff. For negative fractal exponents, in contrast, the dominant high-
frequency oscillation appears in windows of any duration greater than the inverse of the cutoff, particularly
those with windows large enough to reveal the putative fractal behavior.

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



RANGES OF POWER-LAW EXPONENTS 109

We conclude that negative values ofα, although not prohibited, are generally not
useful for fractal-based point processes. We therefore limit ourselves to values ofα
that are strictly positive.

5.2.2 Observed values of α

Experience shows that values ofα > 2, although not prohibited theoretically, rarely
occur in practice. Furthermore, the process of estimating large values ofα is problem-
atical. The large rate of change attendant to such values, over even just a few orders
of magnitude along the abscissa, leads to very large changes along the ordinate. As
an example, consider a spectrum withα = 5 and a spectrum of 1 kW/Hz atf = 1
Hz; at a frequencyf = 1 kHz, the spectrum will have fallen to 1 pW/Hz, a factor of
1015.

5.2.3 Limited range of the normalized variance exponent

Mathematical constraints limit the values that power-law exponents can attain for
some statistics, affecting their usefulness in characterizing fractal behavior in point
processes. We begin with the normalized varianceF (T ), which has a power-law
exponent that cannot exceed unity, as we now demonstrate.

In terms of the sequence of counts{Zk(T )} we have, by definition,

F (T ) ≡ Var[Z(T )]
E[Z(T )]

, (5.23)

whichreiterates Eq. (3.32). Consider now a larger counting window of durationnT ,
and express the new sequence of counts{Zk(nT )} in terms of the original sequence
as

Zk(nT ) =
kn+n−1∑

m=kn

Zm(T ). (5.24)

For the mean and variance ofZk(nT ) we then have

E[Z0(nT )] = E

[
n−1∑
m=0

Zm(T )

]
=

n−1∑
m=0

E[Zm(T )] = nE[Z(T )] (5.25)

Var [Z0(nT )] = E

[
n−1∑

l=0

{
Zl(T )− E[Z(T )]

} n−1∑
m=0

{
Zm(T )− E[Z(T )]

}]

=
n−1∑

l=0

n−1∑
m=0

E
[{

Zl(T )− E[Z(T )]
}{

Zm(T )− E[Z(T )]
}]

≤
n−1∑

l=0

n−1∑
m=0

E
[{

Zm(T )− E[Z(T )]
}2

]

= n2 Var[Z(T )], (5.26)
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where we have setk = 0 without loss of generality for a stationary point process.
This results in an upper bound for the increase of the normalized variance:

F (nT ) =
Var[Z(nT )]
E[Z(nT )]

≤ n2 Var[Z(T )]
nE[Z(T )]

= n
Var[Z(T )]
E[Z(T )]

= nF (T ). (5.27)

Thus,for an orderly, stationary point process, multiplying the counting time by an
integer factorn permits the normalized variance to increase at most by that factor
n. In particular, if the normalized variance follows the power-law formF (T ) =
(T/TF )αF , then the power-law exponentαF cannot exceed unity.

Indeed, a number of point processes yield exponents that achieve the maximum
valueαF = 1. A nonfractal example is provided by an integrate-and-reset process
with a rate that increases linearly between periodic resets. We illustrate this by
choosing an integrate-and-reset point process with a rate given by

µ(t) = µ0[1 + cos(ω0t + θ)], (5.28)

whereω0 andµ0 represent fixed, deterministic quantities with units of inverse time.
The random variableθ, which is taken to be uniformly distributed between zero and
2π, renders the rateµ(t) and the resulting point process stationary.

For counting timesT much larger that1/µ0, the number of counts will greatly
exceed unity, justifying the approximations below. We then have

Z0(T ) ≈
∫ T

0

µ(t) dt =
∫ T

0

µ0[1 + cos(ω0t + θ)] dt

= µ0 T + µ0 ω−1
0 [sin(ω0T + θ)− sin(θ)]

= µ0 T + 2µ0 ω−1
0 sin(ω0T/2) cos(ω0 T/2 + θ) (5.29)

E[Z0(T )] = µ0 T (5.30)

Var[Z0(T )] ≈ 4µ2
0 ω−2

0 sin2(ω0T/2)E[cos2(ω0 T/2 + θ)]
= 2µ2

0 ω−2
0 sin2(ω0 T/2). (5.31)

If we further stipulate that the time scale of the sinusoid greatly exceeds that of the
counting time, so that1/ω0 À T , then the rate approximates a linear function over
the counting timeT , and the results above simplify to

Var[Z0(T )] ≈ 2µ2
0 ω−2

0 [(ω0 T/2)2 − (ω0 T/2)4/3]
= µ2

0 T 2/2− µ2
0 ω2

0 T 4/24
F (T ) ≈ µ0 T/2− µ0 ω2

0 T 3/24 (5.32)

≈ µ0 T/2, (5.33)

thereby demonstrating that this process does indeed achieveαF = 1. This result
often emerges for nonfractal point processes with time-varying rates and when rate
nonstationarities are present (see, for example Prucnal & Teich, 1979).

As with the normalized variance, values ofα for the autocorrelation and coin-
cidence rate necessarily lie below unity. Equation (3.51) establishes that for large

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



RANGES OF POWER-LAW EXPONENTS 111

delay times, the coincidence rate approaches a constant valueE2[µ], while Eq. (5.12)
exceeds this value byE2[µ] (t/tG)α−1. In order that this quantity vanish for larget,
so that the coincidence rate can achieve the limit provided in Eq. (3.51), it is required
thatα < 1. Furthermore, application of Eq. (3.57) to a coincidence rate withα > 1
would result in a spectrum that assumes negative values at large frequencies, an im-
possibility. This same argument applies to the autocorrelationRZ(k, T ) (taken as a
function of the delay indexk), through Eq. (3.56).

The generalized dimensions of point processes encountered in the treatment pro-
vided here also lie below unity, because the dimension of any object may not exceed
that of the space in which it is embedded. Lines have dimensions of unity, and we
focus on point processes on a line.

For the point-process spectrumSN (f) [as well as for the rate spectrumSλ(f, T )],
in contrast, no such limit exists (however, see Prob. 5.12). Indeed, we chose the
spectrum as a starting point in Sec. 5.1 precisely for this reason.

5.2.4 Range of the normalized Haar-wavelet-variance exponent

A more generous maximum exponent obtains for the normalized Haar-wavelet vari-
ance. We proceed in a similar fashion, beginning with the mean-square difference in
the number of counts, and rearranging the sums to obtain

E
[{

Z0(nT )− Z1(nT )
}2

]

= E




{
n−1∑
m=0

Zm(T )−
2n−1∑
m=n

Zm(T )

}2



= E

[{
n∑

m=1

m
[
Zm−1(T )− Zm(T )

]

+
2n−1∑

m=n+1

(2n−m)
[
Zm−1(T )− Zm(T )

]}2



≤
[

n∑
m=1

m +
2n−1∑

m=n+1

(2n−m)

]2

E
[{

Zm−1(T )− Zm(T )
}2

]

= n4 E
[{

Z0(T )− Z1(T )
}2

]
. (5.34)

Proceeding as previously, we obtain an upper bound for the increase of the normalized
Haar-wavelet variance determined by

A(nT ) = E
[{

Z0(nT )− Z1(nT )
}2

]/
2E[Z0(nT )]

≤ n4 E
[{

Z0(T )− Z1(T )
}2

]/
2n E[Z0(T )]

= n3A(T ). (5.35)
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This indicates a maximum factor ofn3 in the growth of the normalized Haar-wavelet
variance as the counting time increases byn. The corresponding power-law exponent
αA therefore cannot exceed three, which is ample to accommodate all practical fractal-
based point processes (see Sec. 5.2.2).

The same nonfractal integrate-and-reset process defined by Eq. (5.28), which
achieved the maximum power-law exponent of unity for the normalized variance
F (T ) for counting timesT in the range1/µ0 ¿ T ¿ 1/ω0, also yields the maxi-
mum power-law exponent for the normalized Haar-wavelet varianceA(T ). Combin-
ing Eqs. (3.41) and (5.32) provides

A(T ) = 2F (T )− F (2T )
≈ µ0 T − µ0 ω2

0 T 3/12− µ0 T + µ0 ω2
0 T 3/3

= µ0 ω2
0 T 3/4, (5.36)

indicating that this process again achieves the maximum permitted value,αA = 3, as
do many nonstationary, nonfractal point processes.3

It is important to note that in deriving Eq. (5.36), we have made use of Eq. (5.32),
rather than its approximation, Eq. (5.33). Using the latter yields incorrect results
when linear terms dominateF (T ) − 1. To illustrate this, suppose that over some
range of counting timesT , the normalized variance has a linear term that exceeds
another contribution with a power-law form other than linear. To first order, we then
have

F (T ) = 1 + c1T + c2T
α

≈ 1 + c1T. (5.37)

Based on this approximation, Eq. (3.41) yields

A(T ) = 2F (T )− F (2T )
≈ 2 + 2c1T − (1 + 2c1T )
= 1. (5.38)

However, the proper value of the normalized Haar-wavelet variance also contains a
term that varies asTα:

A(T ) = 2F (T )− F (2T )
= 2 + 2c1T + 2c2T

α − (1 + 2c1T + 2αc2T
α)

= 1 + (2− 2α) c2T
α. (5.39)

The disagreement between Eqs. (5.38) and (5.39) stems from improper use of asymp-
totic results in intermediate calculational steps. Equation (3.41) is correct and applies
exactly in all cases. We conclude that when first-order approximations yield terms
in F (T ) that are linear inT , we must retain the higher-order terms in calculating the
normalized Haar-wavelet variance by means of Eq. (3.41).

3 Under some circumstances such nonstationarities can mask the presence of fractal behavior (see, for
example, Turcott, Lowen, Li, Johnson, Tsuchitani & Teich, 1994).
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5.2.5 Range of the normalized general-wavelet-variance exponent

Other wavelets offer even higher limits for their power-law exponents, as we now
proceed to demonstrate (Teich et al., 1996; Heneghan, Lowen & Teich, 1996). We
first recast Eq. (3.68) from a time domain integral into one in the frequency domain,

Var[Cψ,N (a, b)] = a

∫

x

G(ax)
∫

y

ψ(x + y)ψ(y) dy dx

= a

∫

x

∫

f

G(ax) |ϕ(f)|2 ei2πfx df dx

=
∫

f

SN (f/a) |ϕ(f)|2 df, (5.40)

where
ϕ(f) =

∫

x

ψ(x) e−i2πfx dx (5.41)

represents the Fourier transform of the waveletψ(x).
The behavior ofϕ(f) nearf = 0 determines the convergence properties of the

integral in Eq. (5.40); this is related tonv, the number of contiguous vanishing
moments of the waveletψ(t). We definenv as the largest integer for which

∫
ψ(t) tk dt = 0 (5.42)

for all k such that0 ≤ k ≤ nv. The integral in Eq. (5.40) converges near the origin
if the integrand increases more slowly than1/f in that region. Given a spectrum that
decays asf−α, this convergence requires that2c > α − 1. A normalized wavelet
variance constructed using a wavelet for which|ϕ(f)| ∼ f c nearf → 0 will therefore
faithfully reproduce power-law exponentsα in the range0 < α < 2c + 1.

As an example, we return to the Haar wavelet, which has

ϕ(f) = 2ieiπf sin2(πf/2) /f

|ϕ(f)| = 2 sin2(πf/2) /f ∼ f1 (5.43)

nearf = 0, so thatc = 1, which yields a maximum power-law exponent of2c+1 = 3,
as previously demonstrated in Eq. (5.35).

Wavelets other than the Haar have Fourier transforms that decay asf c with c > 1,
and therefore appear useful for the analysis of fractal processes withα > 3. Such
wavelets typically exhibit higher regularity and therefore have a higher number of
vanishing moments. However, there is an important practical caveat regarding their
use: they have larger support for a given scale and hence exhibit reduced scaling
ranges for finite-length data sets (Heneghan et al., 1996), as is demonstrated in Fig. 5.3.
Moreover, processes withα > 3 do not often occur in practice so that the Haar wavelet
usually suffices, as demonstrated in Sec. 5.4.4. Wavelets other than the Haar also
enjoy the property of being insensitive to linear or higher-order polynomial trends,
but in practice nonstationarities rarely follow a polynomial form. Finally, we note that
wavelets with higher regularity yield wavelet transforms with less correlation among
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the resulting wavelet coefficients, thereby improving the statistics of the resulting
estimate (Tewfik & Kim, 1992). This also suggests the use of wavelets other than
the Haar (Abry et al., 2003), but these wavelets turn out to yieldincreasedvariance
in fractal-exponent estimates (Bardet, Lang, Oppenheim, Philippe, Stoev & Taqqu,
2003), perhaps as a result of their larger support. We conclude that the Haar wavelet
is generally the wavelet of choice for the analysis of point processes.

5.3 RELATIONSHIPS AMONG MEASURES

The relationships set forth in Sec. 5.1 all follow power-law forms. They are valid
for 0 < α < 1 and display simple interrelations among their exponents over some
range of the independent variables. Expressions over a range of times and frequencies
are also available for all measures forα = 1. For α > 1, the limitations exposed
in Sec. 5.2 tell us that the spectrum and normalized Haar-wavelet variance are the
measures of choice; they offer extended validity over the range0 < α < 3.

The relationships among the various measures over the full range0 < α < 3 are
summarized below:

• For0 < α < 1:

SN (f) = E2[µ] δ(f) + E[µ] [1 + (f/fS)−α] a)
F (T ) = 1 + (T/TF )α b)
A(T ) = 1 + (T/TA)α c)

RZ(k, T ) = E2[µ] T 2 + (E[µ] T ) (T/TR)α kα−1 d)
G(t) = E[µ] δ(t) + E2[µ]

[
1 + (|t|/tG)α−1

]
e)
(5.44)

with

(2πfS TF )α = cos(πα/2) Γ(α + 2) a)
(TF /TA)α = 2− 2α b)
(TF /TR)α = 1

2 α(α + 1) c)
E[µ] t1−α

G Tα
R = 1 d)

(5.45)
where the limitsE[µ]T À 1 andk À 1 apply for Eq. (5.44d).

• Forα = 1:

SN (f) = E2[µ] δ(f) + E[µ] (1 + fS/f) a)
F (T ) = 1 + 2fST ln(B/T ) b)
A(T ) = 1 + 4 ln(2) fST c)

RZ(k, T ) = E2[µ] T 2 + 2E[µ]fS ln[B/(kT )] T 2 d)
G(t) = E[µ] δ(t) + E2[µ] + 2fS E[µ] ln(B/t) e)

(5.46)
whereSN (f) is assumed to have a cutoff so thatF (T ), RZ(k, t), andG(t)
exist.
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• For0 < α < 3:

SN (f) = E2[µ] δ(f) + E[µ] [1 + (f/fS)−α] a)
A(T ) = 1 + (T/TA)α b)

(5.47)
with

(2πfS TA)α =





cos(πα/2) Γ(α + 2)/(2− 2α) 0 < α < 1
π/ [2 ln(2)] α = 1
[− cos(πα/2)] Γ(α + 2)/(2α − 2) 1 < α < 3.

(5.48)

Equations (5.45) and (5.48) specify the relationships among the variousfractal onset
times and fractal onset frequencies. Earlier recitations of such relations appeared
in Lowen & Teich (1993a, 1995), Thurner et al. (1997), and Ryu & Lowen (1998).

5.4 EXAMPLES OF FRACTAL BEHAVIOR IN POINT PROCESSES

Following a brief discussion of1/f noise in the context of fractal-based continuous and
point processes, we examine the estimated normalized spectrum and normalized Haar-
wavelet variance for six representative biological point processes and one computer
network traffic trace.

5.4.1 1/f noise

Many forms of data, in many fields of endeavor, behave in accordance with the power-
law spectrum specified in Eq. (5.1):S(f) ≈ (f/fS)−α. Signals with spectra of this
form are typically referred to as1/fα noiseor 1/f-type noise. In the particular case
whenα = 1, common appellations are1/f noise, flicker noise, excess noise, and
pink noise.4 Sinc no strict standard for this nomenclature exists, however, all of the
foregoing descriptions are also used to describe1/fα noise whenα is in the rough
vicinity of unity.

Fluctuations of this form are ubiquitous in the natural world. The earliest obser-
vation in the physical sciences appears to have been made by Johnson (1925), who
discovered excess1/fα noise in the course of his studies of low-frequency circuits.
Such fluctuations are also widely present in electronic materials and devices, including

4 Spectra that are uniform in frequency are referred to aswhite noisein analogy with white light, which
contains an equal weighting of all colors. If a spectrum obeys the formS(f) ≈ 1/f , on the other hand,
each octave is endowed with equal energy so that lower frequencies are weighed more heavily. By the
same optical analogy, the red portion of the spectrum is then enhanced relative to the blue so that such
spectra have come to be calledpink noise. Spectra that follow the formS(f) ≈ 1/f2 should, by all
rights, then be termed “red noise,” but are known instead asbrown noise by virtue of their association
with ordinaryBrownian motion.
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carbon resistors,5 thin-film resistors, semiconductors, metal films, electrolytes, super-
conductors, thermionic-emission devices, and junction devices (Bell, 1960, 1980; van
der Ziel, 1988; Weissman, 1988; Buckingham, 1983; Kogan, 1996). In electronics,
the range of frequencies over which such behavior is manifested can stretch over 12
orders of magnitude or more, andα typically lies between0.8 and1.4 (Buckingham,
1983, Chapter 6). The origins of this phenomenon remain obscure for many devices
and systems. The underlying mechanism is often associated with fluctuations of the
number, or the mobility, of the charge carriers, but other causes have been postulated.
1/f -type noise is thought by some to be a surface effect whereas others attribute it
to bulk behavior. In the biological sciences,1/fα noise appears to have been first
observed by Verveen (1960) in his studies of membrane-voltage fluctuations.

Behavior of this kind is not restricted to simple materials, components, and de-
vices. Complex systems also exhibit1/fα noise; examples stretch from fluctuations
of the flood level on the river Nile (Hurst, 1951), to voltage fluctuations in the hu-
man electroencephalogram (Musha, 1981), to measurements of cerebral blood flow
(West, Zhang, Sanders, Miniyar, Zuckerman & Levine, 1999), to the formation of
representations in a cognitive process (Gilden, 2001), to music deemed aesthetically
pleasing to the listener (Gardner, 1978; Voss & Clarke, 1978; Voss, 1989; Hsü & Hsü,
1991). The ascendancy of fractal analysis in recent years has also drawn increased
attention to1/f noise (Mandelbrot, 1982; Montroll & Shlesinger, 1982; Shlesinger,
1987; Schroeder, 1990; West & Deering, 1995).

Our particular interest relates to the fluctuations observed in point processes rather
than in continuous processes as highlighted above. Indeed,1/f -type noise is ubiqui-
tous in this domain as well.6 Early work along these lines was strongly influenced by
Toshimitsu Musha and colleagues, who examined examples as diverse as vehicular
traffic flow (Musha & Higuchi, 1976), spike-discharge intervals (Musha et al., 1983),
human tapping intervals (Musha, Katsurai & Teramachi, 1985), and heartbeat period
in humans (Kobayashi & Musha, 1982).

5.4.2 Normalized rate spectrum

In this section and the next, we examine second-order statistics for a collection of
point processes. We plot the normalized estimated rate spectrum,Ŝλ(f, T )/Ê[λ] vs.
normalized frequencyf/Ê[λ], in Fig. 5.1 for six biological point processes and one

5 Although ubiquitous,1/f -type noise is not universal; it is not present, for example, in wire-wound
resistors.
6 Interval-basedspectra are often reported for point processes since calculating the spectrum of a discrete-
time sequence is straightforward and the availability of the fast Fourier transform lowers the computational
cost. Strictly speaking, the descriptor “1/f-type noise” should be used for such results, wheref has units
of cycles per number of intervals (see Sec. 3.3.3), but for simplicity we use the appellation “1/f -type
noise” for both forms of the spectrum.
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computer network traffic trace. To facilitate visual comparison, we have smoothed
the spectra using a suitable windowing function.7

Figure 5.1 displays curves for the following point processes8: spontaneous vesic-
ular exocytosis at a developingXenopusneuromuscular junction (synapse) (Lowen
et al., 1997b, Figs. 5 and 8, pp. 5670 and 5672, cell 950315e1); action-potential
sequence recorded from a cat primary afferent auditory nerve fiber driven at its char-
acteristic frequency of 10.2 kHz(cochlea) (Lowen & Teich, 1992a, the companion
spontaneous recording is labeled “unit I”); action-potential sequences recorded from
a cat on-center X-type retinal ganglion cell(retina) and its associated lateral genic-
ulate nucleus cell(geniculate), in response to a 4.2-Hz drifting grating with 40%
contrast and a mean luminance of 50 cd/m2 (Lowen et al., 2001, Figs. 5D and 5E,
p. 388, cells y31900ret and y31900lgn); action-potential sequence recorded from a
cat layer-vi standard-complex striate cortex cell(cortex), in response to a weak
steady background luminance≈ 0.25 cd/m2 (Teich et al., 1996, cell 3); 20-hour se-
quence of heartbeats recorded from a normal human subject(heartbeat) (Turcott
& Teich, 1996, data set 16273 from the MIT–BIH Normal Sinus Rhythm Database;
available at http://www.physionet.org/physiobank/database/nsrdb/); and one million
consecutive Ethernet-packet arrivals(computer) (Leland & Wilson, 1989, 1991,
data set BC-pOct89 collected at the Bellcore Morristown Research and Engineering
Facility in 1989; available at http://ita.ee.lbl.gov/html/contrib/BC.html).

All of the curves follow the general form of Eq. (5.1) over a range of normalized
frequencies,̂Sλ(f, T )/Ê[λ] ∼ (f/fS)−α, suggesting the presence of fractal behavior.
Similar results are obtained from the interval spectrum for these particular data sets
(see Fig. 5.7 and Prob. 5.2).

5.4.3 Normalized Haar-wavelet variance

To complement the estimated spectral data displayed in Fig. 5.1, we present in Fig. 5.2
the estimated normalized Haar-wavelet varianceÂ(T ) vs. normalized counting time
T/Ê[τ ] for the same six biological point processes and one computer network traffic

7 We smooth the measured rate and interval spectra by making use of the following procedure. We calculate
the Fourier transform of the rate function (or interval sequence) and obtain its square magnitude. We then
transform back into the time domain, which yields the autocorrelation. We multiply the autocorrelation
by a triangular window with unity height at the origin, that decreases linearly to zero at one-eighth of
the array size of the fast Fourier transform. Next we transform back to the frequency domain; this is
the third Fourier transform involved in the smoothing procedure. The next step is to collect values into
nonoverlapping blocks such that the largest frequency in a block, divided by the smallest, is as large as
possible while lying below 1.02. Finally, all frequencies in each block are averaged and presented as a
single frequency; the associated spectral values are similarly averaged. This procedure makes the graph
appear progressively smoother as the frequency increases. The triangular windowing in the time domain
is equivalent to subjecting the (noisy) periodogram to a moving-averagesinc2(·) filter in the frequency
domain. This procedure reduces noise, but also reduces frequency resolution. Note that smoothing is
generally eschewed before rigorous parameter estimation, as pointed out in Chapter 12.
8 These seven point processes are also examined in Figs. 5.2, 5.7–5.10, 11.2–11.4, 11.6–11.8, 11.10, 11.11,
11.13, and 11.14.
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RETINA (�100)HEARTBEAT (�101)COCHLEA (�102)GENICULATE (�103)COMPUTER (�104)CORTEX (�105)SYNAPSE (�106)
NORMALIZED FREQUENCY f=bE[�℄
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DESTIMATE
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Fig. 5.1 Normalized estimated spectrum,Ŝλ(f, T )/Ê[λ] vs. normalized frequencyf/Ê[λ],
for six biological point processes and one computer network traffic trace. The timeT is
chosen such that1/

√
2 < 30 T/E[τ ] <

√
2, ensuring that the size of the Fourier-transform

exceeds the number of intervals by a significant factor (15
√

2). Curves are displayed for
the following point processes (see text for sources of data): vesicular exocytosis (synapse);
action-potential sequence recorded from an auditory nerve fiber(cochlea); action-potential
sequences recorded from a retinal ganglion cell(retina) as well as its associated lateral
geniculate nucleus cell(geniculate); action-potential sequence recorded from a striate
cortex cell(cortex); day-long sequence of normal human heartbeats(heartbeat); and
one million consecutive Ethernet-packet arrivals(computer). The curves decrease with
frequency roughly as power laws, with seven negative estimated power-law exponents−α̂S .
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RETINAHEARTBEATCOCHLEAGENICULATECOMPUTERCORTEXSYNAPSE

NORMALIZED COUNTING TIME T=bE[� ℄ESTIMATED
NHWVb A(T)
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Fig. 5.2 Estimated normalized Haar-wavelet variance (NHWV),Â(T ) vs. normalized count-
ing timeT/Ê[τ ], for the same seven point processes as displayed in Fig. 5.1. We present curves
for the following point processes (see text for sources of data): vesicular exocytosis (synapse);
action-potential sequence recorded from an auditory nerve fiber(cochlea); action-potential
sequences recorded from a retinal ganglion cell(retina) as well as its associated lateral
geniculate nucleus cell(geniculate); action-potential sequence recorded from a striate cor-
tex cell(cortex); day-long sequence of normal human heartbeats(heartbeat); and one
million consecutive Ethernet-packet arrivals(computer). The curves increase roughly as
straight lines, indicating approximate power-law dependence on the counting time, with seven
positive estimated power-law exponentsα̂A.

trace. The calculations made use of counting timesT that increased geometrically
by factors of100.1, providing 10 counting times per decade.

These curves are the time–scale equivalents of1/fα fluctuations. They follow
the general form of Eq. (5.2) over a range of normalized counting times,A(T ) ≈
(T/TA)α. The normalized interval wavelet variance for these data provide further
evidence for power-law behavior (see Fig. 5.8 and Prob. 5.3). All of these results
together lend credence to the notion that the data exhibit fractal behavior, as suggested
by the results presented in Sec. 5.4.2.

In spite of its ubiquity, the fractal behavior evident in these point processes should
not be ascribed to any single physical or biological mechanism. As demonstrated in
the following chapters, behaviors in accordance with1/fα andTα are inherent in
essentially all fractal-based point processes, under suitable conditions.
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5.4.4 Normalized Daubechies-wavelet variance

Of all possible wavelets, the Haar has compact support and also has the best local-
ization in time. This temporal precision, must, of course, be traded against scale
resolution by virtue of the uncertainty principle.

Ingrid Daubechies (1988) developed a family of wavelets with compact support
and differing abilities to localize signals in time and scale. The Haar forms the
simplest and first member of this family. Daubechies wavelets are defined in terms
of discrete-time filters withn coefficients, or “taps,” withn an even positive integer.
Orthogonality requirements yieldn/2 equations for these coefficients. To specify the
othern/2 equations, and thus to determine the coefficients, Daubechies set the filter
response to zero for polynomials of order less thann/2.

The Haar wavelet, which is equivalent to the Daubechies 2-tap wavelet, is therefore
insensitive to constant values, whereas the Daubechies 20-tap wavelet, for example,
is insensitive to polynomials up to and including order nine. Increasing the number
of taps enhances the scale localization, but at the expense of a loss in time precision.
This polynomial insensitivity is salutary inasmuch as it mitigates against some forms
of nonstationarity that might be present in the point process although, as discussed in
Sec. 5.2.5, nonstationarities do not always follow polynomial forms.

To illustrate the behavior of wavelets beyond the Haar, we plot the estimated
normalized Daubechies-wavelet varianceÂW (T ) ≡ V̂ar[Cψ,N (T, ·)]/Ê[λk(T )] for
a sequence of geniculate action potentials, as a function of the normalized counting
time T/Ê[τ ], in Fig. 5.3. In this case we calculate the wavelet variance using four
different Daubechies wavelets: 2-tap, 8-tap, 14-tap, and 20-tap, as indicated in the
figure. The four curves all begin at a normalized counting time of 0.1 by construction.
For large counting times the curves all increase roughly as straight lines, yielding four
exponentŝαW , all of which are essentially the same. For this finite-length data set,
the scaling region shrinks as the wavelet support increases with the number of taps,
confirming the suggestion set forth in Sec. 5.2.5 that the Haar wavelet generally
suffices for the analysis of fractal-based point processes.

5.5 FRACTAL-BASED POINT PROCESSES

The statistical measures described in Sec. 5.3, and examined in Sec. 5.4 for various
experimental point processes, are second-order relationships. As such, they provide
important, but limited, information about the underlying point process. We now
proceed to further specify these underlying point processes.

In this section we compare and contrast two mutually exclusive classes of fractal-
based point processes: fractal point processes and fractal-rate point processes. Both
forms are found in the physical and biological sciences. Specific models that belong
to these classes are examined in Chapters 6–10, where we study their full properties.
We also devote a portion of this section to re-examining and confirming the nature of
the nonfractal point processes introduced in Chapter 4, and we briefly consider the
identification of fractal-based point processes.
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Fig. 5.3 Estimated normalized Daubechies-wavelet variances (NDWV),ÂW (T ) vs. nor-
malized counting timeT/Ê[τ ], for an action-potential sequence recorded from a cat on-center
X-type lateral geniculate nucleus cell in response to a 4.2-Hz drifting grating with 40% contrast
and a mean luminance of 50 cd/m2 (Lowen et al., 2001, cell y31900lgn). Results are shown
for four Daubechies wavelet bases: 2-tap (Haar), 8-tap, 14-tap, and 20-tap. The scaling region
decreases as the wavelet support increases with the number of taps.

5.5.1 Fractal point processes

We define afractal point processas one that has the following properties:

• 0 < α < 1

1. Scaling behavior in the spectrumSN (f), coincidence rateG(t), autocor-
relationRZ(k, T ), normalized variancesF (T ) andA(T ), and interval
probability density functionpτ (t).

2. Simply related exponents, as in Eq. (5.44).

3. Generalized dimensionsDq in the sense of Eq. (3.72), withDq = D = α
for all q.

Because all exponents and generalized dimensions coincide, the collection of mea-
sures specified above are characterized by a single value,α, that describes the scaling
behavior. SinceDq cannot exceed unity for a collection of points on a line, and the
upper bound of unity leads to a degenerate point process, we haveα < 1. In addition,
as discussed in Sec. 5.2.1, we requireα > 0. Taken together, these two limits yield
0 < α < 1 for a fractal point process, as indicated above.
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Fig. 5.4 Comparison of measures for a particular fractal point process, the fractal renewal
process (FRP; see Chapter 7); and a point process that is devoid of fractal properties, the homo-
geneous Poisson process (HPP; see Sec. 4.1). We plot cartoons for four different probabilistic
measures: (a) interevent-interval probability density, (b) rescaled range, (c) point-process spec-
trum, and (d) normalized Haar-wavelet variance. The rescaled-range measure cannot differen-
tiate between these two processes since both belong to the family of renewal point processes.
However, the other three measures exhibit nontrivial power-law variations for the fractal point
process, but not for the nonfractal process.

The intermittency , which quantifies the unevenness of a point process, is defined
as1−D2; it assumes a value of zero for a perfectly periodic point process, in which
all intervals are identical, and approaches unity for a highly clustered process (Bickel,
1999). SinceD2 = α for fractal point processes, the intermittency is1− α.

In Fig. 5.4, we display the statistics of the nonfractal homogeneous Poisson process
described in Sec. 4.1, together with a particular fractal point process, thefractal
renewal processdiscussed in Chapter 7. This process exhibits scaling behaviors
in all of the measures listed above and indeed hasDq = α for all q. In particular,
realizations of this process are fractal.

Several of the interval-based measures described in Sec. 3.3 donot indicate frac-
tal behavior for this process, which is, by definition, fractal. This is because the
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process is renewal (see Sec. 4.2) so that the intervals between adjacent events{τn}
are independent and identically distributed. Thus, results that are indistinguishable
from those of other, nonfractal renewal point processes (see Sec. 5.5.3) emerge for
the interval-based autocorrelationRτ (k), interval spectrumSτ (f), interval wavelet
varianceVar[Wψ,τ (k, l)], rescaled rangeU(k), and detrended fluctuationY (k). As a
consequence, these interval-based measures are not suitable for determining the pres-
ence or absence of fractal behavior in general fractal-based point processes, which
comprise both fractal and fractal-rate point processes (see Sec. 12.3.1). We therefore
use interval-based measures judiciously in the remainder of this book.

Fractal point processes comprise hierarchies of clusters. This can arise if the
interevent intervals are power-law distributed or if they exhibit long-range positive
correlations. An example of a fractal point process that is distinct from the fractal
renewal process arises from an infinitely divisible cascade (Castaing, 1996).

Consider a multiplicative-rate point process (Schmitt, Vannitsem & Barbosa, 1998)
that begins with a constant rate over a fixed interval. Divide the interval intom
subintervals, and multiply each by a random number,W1,k, 1 ≤ k ≤ m. Apply
the same procedure to each subinterval, and then, in turn, to each sub-subinterval,
ad infinitum. The weighting factorsWl,k, 1 ≤ k ≤ ml, are independent, identically
distributed, unit-mean, nonnegative random variables.

A particular implementation of this process sets conditions on the weights ap-
plied to each new interval by the next stage of multiplication (Riedi, 2003). Let
Ql,nm ≡ 1

m

∑m(n+1)
k=mn+1Wl,k denote an average, wheren is any integer between 0

andml−1, inclusive. Two conditions onQl,nm can be imposed for all values ofl and
n specified above: eitherQl,nm = 1 or E[Ql,nm] = 1. When employed as a rate
for a doubly stochastic or integrate-and-reset process, as described in Secs. 4.3 and
4.4, respectively, it turns out that the resultant point process belongs to the family of
fractal point processes (Bickel, 1999).

One formalism for generating amultifractalprocess emerges by changing the time
axis of a monofractal process to another process with multifractal characteristics. For
example,BH(t) ≡ BH [M(t)], whereBH(t) represents fractional Brownian motion
(see Chapter 6) andM(t) is a nondecreasing, multifractal process (Mandelbrot, 1997,
1999). A number of variations on these processes exist (Peltier & Lévy Véhel, 1995;
Benassi, Jaffard & Roux, 1997; Ayache & Lévy Véhel, 1999).

5.5.2 Fractal-rate point processes

Many point processes do not have fractional values ofDq, but nevertheless exhibit
scaling behavior in other measures. Realizations of such processes are not fractals.
Instead, the scaling behavior implies fractal characteristics of theratesassociated with
these point processes: the rate estimated from a realization of the process [λk(T )] and
the probabilistic rate that provides a mathematical description of the process [µ(t)]
(Kumar & Johnson, 1993). Since the fractal behavior inheres to the rate rather than
to the point process itself, we denote these as fractal-rate point processes.
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We thus define afractal-rate point processas one that isnota fractal point process
and has the following properties:

• For0 < α < 1:

1. Scaling behavior in the spectrumSN (f), coincidence rateG(t), auto-
correlationRZ(k, T ), and normalized variancesF (T ) andA(T ).

2. Simply related exponents, as in Eq. (5.44).

• For1 ≤ α < 3:

1. Scaling behavior in the spectrumSN (f) and normalized Haar-wavelet
varianceA(T ).

2. Exponents of these two measures sum to zero,

αA + (−αS) = 0. (5.49)

Fractal-rate point processes can, in principle, exhibit any positive value ofα; values
in excess of two rarely occur in practice, however, as discussed in Sec. 5.2.2. All
of the fractal-based point processes considered in this book belong to the fractal-
rate family, with the exception of the fractal renewal point process and the infinitely
divisible cascade discussed in Sec. 5.5.1.

In Fig. 5.5, we display the statistics of the nonfractalhomogeneous Poisson pro-
cessdescribed in Sec. 4.1, together with a particular fractal-rate point process, the
fractal-Gaussian-process-driven Poisson process. This is a doubly stochastic Pois-
son process driven by a fractal Gaussian process; we consider it in detail in Secs. 6.3.3,
8.4, and 10.6.1, as well as in Chapter 12. For this point process, the spectrum, coinci-
dence rate, count autocorrelation, and normalized count variances all scale with their
respective arguments. However, it is a fractal-rate point process and not a fractal point
process since the interevent-interval density is exponentially (rather than power-law)
distributed and sinceDq assumes integer values for allq (see Prob. 5.5).

Examination of Figs. 5.4 and 5.5 shows that the two interval-based measures fail
to reliably reveal fractal-based behavior in a point process, whereas the other two
measures do. We address this issue in greater detail in Sec. 12.3.1.

5.5.3 Nonfractal point processes

In light of the foregoing definitions, the processes described in Chapter 4 are certainly
“nonfractal.”

Consider first the homogeneous Poisson process, described in Sec. 4.1. Exami-
nation of the measures set forth in that section reveals that none exhibit power-law
behavior or scaling, except for trivial, integer powers in the count-based autocorre-
lation. Thus, the homogeneous Poisson process belongs to the class of nonfractal
processes.

Renewal point processes and doubly stochastic Poisson processes both have fractal-
based versions, as we have seen and shall see again in subsequent chapters. In general,
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Fig. 5.5 Comparison of measures for a particular fractal-rate point process, the fractal-
Gaussian-process-driven Poisson process withα = 1

2
(FGPDP;see Chapters 6, 8, 10, and 12);

and a point process that is devoid of fractal properties, the homogeneous Poisson process (HPP;
see Sec. 4.1). We plot cartoons for the same four probabilistic measures shown in Fig. 5.4:
(a) interevent-interval probability density, (b) rescaled range, (c) point-process spectrum, and
(d) normalized Haar-wavelet variance. For small values of the rate coefficient of variation, the
interevent-interval probability density does not differentiate between these two processes [see
Eq. (4.33)], although the intervals have different ordering in the two cases. However, the other
three measures exhibit nontrivial power-law variations for the fractal-rate point process, but
not for the nonfractal process.

however, these two classes of processes do not exhibit fractal characteristics, as is
evident in Secs. 4.2 and 4.3, which leads us to term the general versions thereof as
“nonfractal.”

5.5.4 Identification of fractal-based point processes

A worthy goal of point-process analysis is the association of a particular point-process
model with an observed point process. The ability to exclude competing models serves
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to narrow the range of possible mechanisms that could plausibly give rise to the data,
thereby opening a window on the underlying science.

Because of the sparseness of point-process data, this is generally not an easy task.
Consider the simple example of a fractal-rate point process. Rate fluctuations at
frequencies significantly higher than the mean rate of the generated point events are
essentially not transferred to the point process. Hence, details that could elucidate
the nature of the rate process are lost. Moreover, no single statistic is sufficient to
identify or characterize a fractal-based point process. Nevertheless, under certain
circumstances, progress toward the identification of a fractal-based point process can
be achieved by using a number of statistics in concert (see, for example, Rangarajan
& Ding, 2000; Greis & Greenside, 1991).

We present a simple example that relies on the distinctions between fractal and
fractal-rate point processes drawn earlier in this Section. If the estimated spectrum
(Sec. 3.5.2) of the point process under study,ŜN (f), strongly indicates the presence
fractal behavior, while the estimated interval spectrum (Sec. 3.3.3) of the process,
Ŝτ (f), does not, then the point process in question may well belong to the fractal-
renewal-process family. Further confirmation of such a hypothesis is provided by
shuffling the intervals (see Sec. 11.5) and then recomputing the spectra. A renewal
point process, whether fractal or not, is invariant to such shuffling since its interevent
intervals are independent and identically distributed. A more direct approach to dis-
tinguishing between fractal and fractal-rate point processes relies on the generalized
dimensionDq (see Prob. 5.5).

Further discussion related to the identification of point processes is deferred to
Chapters 11 and 13, following the introduction of various fractal-based point-process
models in Chapters 6–10.

Problems

5.1 Rate-spectrum and wavelet-variance scaling-exponent estimates for experi-
mental point processes Consider the spectrum and normalized Haar-wavelet vari-
ance provided in Figs. 5.1 and 5.2.

5.1.1. Obtain estimates for the scaling exponentsα̂S andα̂A for thecomputer
andgeniculate data. Show that̂αA + (−α̂S) ≈ 0, in accordance with Eq. (5.49).
Explain why the two exponents do not sum precisely to zero.

5.1.2. A plot of the normalized variancêF (T ) vs. normalized counting time
T/Ê[τ ] for thecomputer andgeniculate data appears in Fig. 5.6. The counting
timesT increase geometrically by factors of100.1, providing 10 counting times per
decade. We also show theoretical curves that fit the data; these exhibit exponents
α̂F = 0.8 and 1.0, respectively. Compare these values withα̂S andα̂A for the two
data sets and comment on any discrepancy.

5.2 Interval-spectrum scaling-exponent estimates for experimental point processes
Plots of the interval spectrum,̂Sτ (f)/V̂ar[τ ] vs. interval frequencyf, are displayed
in Fig. 5.7 for seven experimental point processes.
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Fig. 5.6 Estimated normalized variancêF (T ) vs. normalized counting timeT/Ê[τ ] for the
computer andgeniculate data displayed in Figs. 5.1 and 5.2. Also shown are the best
fitting theoretical curves. For sufficiently large counting times, these curves increase roughly
as straight lines, indicating an approximate power-law dependence on the counting time, with
estimated power-law exponentŝαF .

5.2.1. Using the graphs provided in Figs. 5.1 and 5.7, determine whetherα̂S and
α̂Sτ are less than, or greater than, unity for all data sets. In making these estimates,
restrict yourself to the decreasing straight-line portions of the curves.

5.2.2. Using only the data displayed in Fig. 5.1, determine which of the point
processes are likely represented by: (i) a fractal-based point process, (ii) a fractal
point process, (iii) a fractal renewal process, (iv) a fractal-rate point process.

5.2.3. Now, consider the curves displayed in Fig. 5.7 in conjunction with those
shown in Fig. 5.1. Using the information provided by both measures, which of the
point processes are likely represented by: (i) a fractal-based point process, (ii) a
fractal point process, (iii) a fractal renewal process, (iv) a fractal-rate point process?

5.2.4. CanSτ (f) provide a good estimate of the fractal exponent?
5.2.5. Why is f = 1

2 themaximum interval frequency plotted forSτ (f)?

5.3 Interval-wavelet-variance scaling-exponent estimates for experimental point
processes Figure 5.8 displays the estimated normalized interval wavelet variance,
Âτ (k) = V̂ar[Wψ,τ (k, l)]/V̂ar[τ ] vs. number of intervalsk [see Eq. (12.13)], for
seven experimental point processes, calculated using the Haar wavelet.
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Fig. 5.7 Normalized estimated interval spectrum,Ŝτ (f)/V̂ar[τ ] vs. interval frequencyf,
for the same seven point processes as displayed in Fig. 5.1. We have smoothed the spectra to
facilitate comparison (see Footnote 7 on p. 117). For sufficiently low interval frequencies, these
curves decrease roughly as straight lines. This indicates an approximate power-law dependence
on the interval frequency, with seven negative estimated power-law exponents−α̂Sτ .

5.3.1. Using the graphs provided in Figs. 5.2 and 5.8, determine whetherα̂A and
α̂Aτ are less than, or greater than, unity for all data sets. Restrict yourself to the
increasing straight-line portions of the curves.

5.3.2. Using only the data displayed in Fig. 5.2, which of these point processes
are likely represented by: (i) a fractal-based point process, (ii) a fractal point process,
(iii) a fractal renewal process, (iv) a fractal-rate point process?
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Fig. 5.8 Estimated normalized interval wavelet variance (NIWV),Âτ (k) vs. number of
intervalsk, for the same seven point processes displayed in Fig. 5.2. We employed the Haar
wavelet for these calculations. The curves increase roughly as straight lines, indicating an
approximate power-law dependence on the number of intervals, with seven positive estimated
power-law exponentŝαAτ .

5.3.3. Now, consider the curves displayed in Fig. 5.8 together with those shown
in Fig. 5.2. Using the information provided by both measures, which of the point
processes are likely represented by: (i) a fractal-based point process, (ii) a fractal
point process, (iii) a fractal renewal process, (iv) a fractal-rate point process?

5.3.4. CanÂτ (k) provide a good estimate of the fractal exponent?

5.3.5. Why isk = 2 the minimum number of intervals plotted for̂Aτ (k)?

5.4 Interevent-interval histograms for experimental point processesIn Fig. 5.9,
we present plots of the normalized interevent-interval histogram,p̂τ (τ/Ê[τ ]) vs.
normalized interevent intervalτ/Ê[τ ] [see Eq. (3.3)], for the seven experimental
point processes considered earlier, presented on doubly logarithmic coordinates.

5.4.1. Based on the curves provided in Fig. 5.9, determine which of the underlying
point processes can conceivably be represented by: (i) a fractal-based point process,
(ii) a fractal point process, (iii) a fractal renewal process, (iv) a fractal-rate point
process.

5.4.2. Now consider also the conclusions reached in the solutions of Probs. 5.2 and
5.3. Which of the point processes are likely represented by: (i) a fractal-based point
process, (ii) a fractal point process, (iii) a fractal renewal process, (iv) a fractal-rate
point process?
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Fig. 5.9 Estimated normalized interevent-interval histogram,p̂τ (τ/Ê[τ ]) vs. normalized
interevent intervalτ/Ê[τ ], for the same seven point processes displayed in Figs. 5.1 and
5.2. We constructed these histograms by employing 100 geometrically spaced bins, from the
smallest to the largest interevent interval, with the exception ofsynapse, for which we used 45
bins to improve the presentation. When no intervals fell into a particular bin, we eliminated it;
bins that contained intervals but were flanked on either side by empty bins also do not appear.
Little information is lost by making use of this procedure.

5.5 Generalized-dimension estimates for experimental point processesAs the so-
lutions to problems 5.2–5.4 show, the seven representative data sets discussed in this
chapter clearly belong to the family offractal-basedpoint processes. Moreover,
as we demonstrate in Sec. 11.5, the use of surrogate data sets (see Figs. 11.13 and
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Fig. 5.10 Capacity-dimension scaling functions (SF)η̂ 0(T ), based on Eq. (3.74), for the
same seven point processes displayed in Figs. 5.1 and 5.2. All curves resemble those for the
nonfractal homogeneous Poisson point process shown in Fig. B.3. All of the data sets displayed
here are described byfractal-ratepoint processes.

11.14) will lead us to conclude that none of the seven arefractal renewalpoint pro-
cesses. However, to determine whether the larger class offractal point processes
describes any of these data (see Sec. 5.5.1), we examine the generalized dimensions
Dq considered in Sec. 3.5.4.

To facilitate comparison across different values ofq, we make use of a doubly
logarithmic plot of the generalized-dimension scaling functionηq(T ) provided in
Eq. (3.73). These sums yield parallel curves for nonfractal and monofractal data sets
and are therefore easier to visualize than the sums provided in Eq. (3.72), which have
slopes that vary withq. For comparisons among data sets, it is also convenient to
normalize the counting time to the mean interevent intervalÊ[τ ].

Figure 5.10 presents the capacity-dimension scaling functionη0(T ) for the seven
canonical data sets considered earlier in this Chapter, calculated in accordance with
Eq. (3.74).

5.5.1. Begin by simulating a homogeneous Poisson process (see Sec. 4.1), and a
fractal renewal process withγ = 1

2 andB = ∞ (seeSec. 4.2 and Ch. 7). For each
process, generate105 intervals, and normalize them by the estimated mean interval.
Although this fractal renewal process has an infinite mean, the105 intervals in the
simulated realization will have a well-defined average value suitable for normaliza-
tion (see Sec. 7.3). Display the capacity-dimension scaling functionη0(T ) vs. the
normalized counting timeT/Ê[τ ] on a doubly logarithmic plot. Include the theoret-
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Fig. 5.11 Generalized-dimension scaling functions (SF)η̂ q(T ) for various values ofq, based
on Eq. (3.73), for spontaneous vesicular exocytosis at a developingXenopusneuromuscular
junction (synapse) (Lowen et al., 1997b, cell 950315e1). Afractal-rate point process de-
scribes these data. Analogous curves for the action-potential sequence at a visual-system
interneuron appear in Fig. 11.18.

ical form for the homogeneous Poisson process considered in Prob. 4.3, as well as a
curve proportional toT γ =

√
T for the fractal renewal process (see Sec. 7.2.5).

5.5.2. Compare the experimental capacity-dimension scaling functions displayed
in Fig. 5.10 with those shown in Fig. B.3, focusing on the slopes of the curves at small
and large values of the normalized time. What conclusions can you draw? Why is the
sharpness of the transition region in the vicinity ofT = Ê[τ ] different for the various
curves?

5.5.3. Of all the data sets examined, Fig. 5.10 reveals that the capacity-dimension
scaling function̂η 0(T ) for thesynapse data has the most gradual transition between
the slopes of zero and unity. While this curve does not indicate the presence of fractal-
point-process behavior, it does not exclude the possibility that similar curves using
other values ofq might. Generalized-dimension scaling functions for thesynapse
data withq = −1, 0, 1

2 , 1, and 2 appear in Fig. 5.11. Can a fractal or multifractal
point process describe these data? Why are the curves for the different values ofq
parallel but not coincident?

5.6 Count autocorrelation function Prove the last step before Eq. (5.13) in greater
detail.
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5.7 Cutoff relationship for unity fractal exponentObserve that the expressions
for α < 1 andα > 1 in Eq. (5.48) are identical. Show that taking the limitα → 1 in
either of these expressions yields the result provided forα = 1.

5.8 Statistics for unity fractal exponentStarting with the spectrum provided in
Eq. (5.46a), and assuming an abrupt low-frequency cutoff given byf > 1/B, prove
the other relationships in Eq. (5.46). Consider the limitkT/B ¿ 1. Hint: Prove
them in the order b), c), e), and d).

5.9 Increasing coincidence rateConsider a coincidence rate thatincreasesin a
power-law fashion with delay time (α > 1). As set forth in Eq. (5.44e), the functional
form of such a coincidence rate would increase without bound forα > 1. In an attempt
to avoid this flaw, we introduce an exponential cutoff at a large timeB:

G(t) = E[µ] δ(t) + E2[µ]
[
1 + sgn(tG) (|t/tG|)α−1 e−|t|/B

]
. (5.50)

Again,sgn(·) denotes the sign of the argument.
Calculate the corresponding spectrumSN (f) and normalized varianceF (T ) for

1 < α < 3, and show that one of these quantities must assume negative values
for at least some times or frequencies. Since such behavior is inadmissible, what
conclusions can you draw about the functional form of the coincidence rate given in
Eq. (5.50)?

5.10 Long-time-scale statistics for negative fractal exponentsShow that Eq. (5.17)
indeed approaches Eq. (5.20) in the low-frequency limitf ¿ fS . Use the relation-
ships provided in Chapter 3 to derive Eqs. (5.19) and (5.21) from Eq. (5.20).

5.11 Statistics for negative fractal exponentsUse Eq. (5.15) (corresponding to
α = − 1

2 ) to prove Eq. (5.17) for the normalized variance. Indicate how Eqs. (5.16)
and (5.18) for the coincidence rate and normalized Haar-wavelet variance are obtained
therefrom.

5.12 Rate-spectrum scaling-exponent limits for data with nonstationary rates
Calculation of the normalized variance and normalized Haar-wavelet variance for data
with a nonstationary rate often produces fractal exponents that attain the maximum
allowed values of 1 and 3, respectively, as shown in Secs. 5.2.3 and 5.2.4. Determine
the behavior of the rate-spectrum fractal exponent for data that exhibits a nonstationary
rate.

5.13 Fractal behavior in nonstationary sets of points The validity of the re-
lationships provided in Chapter 3, which are used throughout, generally requires
stationarity. The Cantor set, described in Sec. 2.4.1, provides an example of a nonsta-
tionary set of points that highlights the limitations of these results for nonstationary
processes (Lowen & Teich, 1995).

Consider a modification of the Cantor set construction procedure, in which we
remove each closed interval fromCm and replace it with a single point event at its
lower limit to yield a point process version thereof,dNm(t). The first three members
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of this series become

dN0(t) = δ(t)
dN1(t) = δ(t) + δ(t− 2

3 )
dN2(t) = δ(t) + δ(t− 2

9 ) + δ(t− 2
3 ) + δ(t− 8

9 ),
(5.51)

which follow from the rule

dNm+1(t) = dNm(t) ? [δ(t) + δ(t− 2/3m)], (5.52)

where? denotes the convolution operation.
5.13.1. Show that the normalized variance9 for dNm+1(t) does indeed exhibit

scaling behavior, reflecting the fractal characteristics of this set of points.
5.13.2. Now demonstrate that the spectrum doesnot reveal scaling behavior.

Comment on the applicability of the central results of fractal-based point processes
to nonstationary sets of points.

9 Since the collection of points under study originates via a deterministic process, it exhibits no randomness
so that notions like variance and spectrum do not strictly apply. However, we treat the setsdNm(t) as if
they were indeed random processes, and derive the statistical measures accordingly.
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